#### The Five Safes as a Privacy Context

James Bailie<sup>1</sup> & Ruobin Gong<sup>2</sup>

Department of Statistics <sup>1</sup>Harvard University <sup>2</sup>Rutgers University

22 September 2023

The 5th Annual Symposium on Applications of Contextual Integrity

<sup>&</sup>lt;sup>1</sup>jamesbailie@g.harvard.edu

<sup>&</sup>lt;sup>2</sup>ruobin.gong@rutgers.edu

## **Motivations**

#### • National Statistical Offices (NSOs) are modernizing their data protection.

- Example: US 2020 Census protected by differential privacy (DP).
- What is DP?

A large family of technical standards (i.e. mathematical specifications)

Troubles in implementation: -Context needs to be understood when choosing which DPstandard to use.

## **Motivations**

- National Statistical Offices (NSOs) are modernizing their data protection.
- Example: US 2020 Census protected by differential privacy (DP).
- What is DP?

A large family of technical standards (i.e. mathematical specifications)

Troubles in implementation: Context needs to be understood when choosing which OP standard to use.

## **Motivations**

- National Statistical Offices (NSOs) are modernizing their data protection.
- Example: US 2020 Census protected by differential privacy (DP).
- What is DP?

A large family of technical standards (i.e. mathematical specifications) that conceptualizes the loss of privacy as a rate of changes the change in the output statistics per unit change of an individual's information.

Troubles in implementation: Context needs to be understood when choosing which DPstandard to use.

- National Statistical Offices (NSOs) are modernizing their data protection.
- Example: US 2020 Census protected by differential privacy (DP).
- What is DP?

A large family of technical standards (i.e. mathematical specifications) that conceptualizes the loss of privacy as a rate of change: the change in the machanes of the output statistics per unit change of an individual's information.

 Troubles in implementation: Context needs to be understood when choosing which DP standard to use.

- National Statistical Offices (NSOs) are modernizing their data protection.
- Example: US 2020 Census protected by differential privacy (DP).
- What is DP?

A large family of technical standards (i.e. mathematical specifications) that conceptualizes the loss of privacy as a rate of change, the change in the second statistics output statistics per unit change of an individual's information.

 Troubles in implementation: Context needs to be understood when choosing which DP standard to use

- National Statistical Offices (NSOs) are modernizing their data protection.
- Example: US 2020 Census protected by differential privacy (DP).
- What is DP?

A large family of technical standards (i.e. mathematical specifications) that conceptualizes the loss of privacy as a rate of change: the change in the second according to output statistics per unit change of an individual's information.

 Troubles in implementation: Context needs to be understood when choosing which DP standard to use

- National Statistical Offices (NSOs) are modernizing their data protection.
- Example: US 2020 Census protected by differential privacy (DP).
- What is DP?

A large family of technical standards (i.e. mathematical specifications) that conceptualizes the loss of privacy as a rate of change: the change in the (distribution of) the output statistics per unit change of an individual's information.

 Troubles in implementation: Context needs to be understood when choosing which DP standard to use

- National Statistical Offices (NSOs) are modernizing their data protection.
- Example: US 2020 Census protected by differential privacy (DP).
- What is DP?

A large family of technical standards (i.e. mathematical specifications) that conceptualizes the loss of privacy as a rate of change: the change in the (distribution of) the output statistics per unit change of an individual's information.

• Troubles in implementation: Context needs to be understood when choosing which DP standard to use.

- National Statistical Offices (NSOs) are modernizing their data protection.
- Example: US 2020 Census protected by differential privacy (DP).
- What is DP?

A large family of technical standards (i.e. mathematical specifications) that conceptualizes the loss of privacy as a rate of change: the change in the (distribution of) the output statistics per unit change of an individual's information.

• Troubles in implementation: Context needs to be understood when choosing which DP standard to use.

- The Five Safes is a reparametrization of Contextual Integrity in the situation where the information flow is a statistical dissemination;
- 2. The Five Safes provides a context for Differential Privacy as a framework for controlling the disclosure risk of statistical dissemination.

The Five Safes Safe People Safe Projects Safe Settings Safe Data Safe Outputs

<sup>&</sup>lt;sup>3</sup>See e.g. Australian Bureau of Statistics, Statistics New Zealand, Office for National Statistics (UK)

- The Five Safes is a reparametrization of Contextual Integrity in the situation where the information flow is a statistical dissemination;
- 2. The Five Safes provides a context for Differential Privacy as a framework for controlling the disclosure risk of statistical dissemination.

The Five Safes<sup>3</sup> Safe People Safe Projects Safe Settings Safe Data Safe Outputs

<sup>&</sup>lt;sup>3</sup>See e.g. Australian Bureau of Statistics, Statistics New Zealand, Office for National Statistics (UK)

# Mapping the Five Safes to CI in statistical dissemination

The two types of information flow in statistical dissemination:

$$data \rightarrow people (researchers)$$
(1)  
outputs  $\rightarrow people (general public)$ (2)

Ex 1. Open Data: public use data files

Ex 2. Data enclaves:

- Physical: Federal Statistical Research Data Center (US); Canadian Research Data Centre Network (StatCan)
- Virtual: DataLab (Australian Bureau of Statistics); Real Time Remote Access (StatCan)
- Ex 3. Synthetic data + validation server
  - e.g. U.S. Census Bureau Survey of Income and Program Participation (SIPP) Synthetic Beta + validation through Gold Standard File

# Mapping the Five Safes to CI in statistical dissemination

The two types of information flow in statistical dissemination:

$$\mathbf{data} \to \mathbf{people} \text{ (researchers)} \tag{1}$$

**outputs** 
$$\rightarrow$$
 **people** (general public) (2)

- Ex 1. Open Data: public use data files
- Ex 2. Data enclaves:
  - Physical: Federal Statistical Research Data Center (US); Canadian Research Data Centre Network (StatCan)
  - Virtual: DataLab (Australian Bureau of Statistics); Real Time Remote Access (StatCan)
- Ex 3. Synthetic data + validation server
  - e.g. U.S. Census Bureau Survey of Income and Program Participation (SIPP) Synthetic Beta + validation through Gold Standard File

# Mapping the Five Safes to CI in statistical dissemination

The two types of information flow in statistical dissemination:

$$data \rightarrow people \text{ (researchers)} \tag{1}$$

**outputs** 
$$\rightarrow$$
 **people** (general public) (2)

| Privacy norm parameters | Their meanings in statistical dissemination              |
|-------------------------|----------------------------------------------------------|
| sender                  | statistical agencies/NSOs/data custodians                |
| recipient               | <b>people</b> : researchers (1) and general public (2)   |
| subject                 | is a component of <b>data</b> (1)                        |
| information type        | is a component of <b>data</b> (1) and <b>outputs</b> (2) |
| transmission principles | encompass <b>projects</b> , <b>settings</b> , and more   |

# DP in the context of the Five Safes

- DP pertains to some aspects of Safe Outputs and Safe Data and is silent on other aspects.
- DP does not purport to assess Safe People, Projects or Settings.
- The Five Safes is a solution concept for implementing DP in a way that respects contextual integrity.



jamesbailie@g.harvard.edu ruobin.gong@rutgers.edu

# DP in the context of the Five Safes

- 1. DP pertains to some aspects of Safe Outputs and Safe Data and is silent on other aspects.
- 2. DP does not purport to assess Safe People, Projects or Settings.
- 3. The Five Safes is a solution concept for implementing DP in a way that respects contextual integrity.



# DP in the context of the Five Safes

- 1. DP pertains to some aspects of Safe Outputs and Safe Data and is silent on other aspects.
- 2. DP does not purport to assess Safe People, Projects or Settings.
- 3. The Five Safes is a solution concept for implementing DP in a way that respects contextual integrity.



jamesbailie@g.harvard.edu ruobin.gong@rutgers.edu

## Five Components of $DP \rightarrow Safe Data \& Outputs$

- The protection domain (what can be protected?): as defined by the dataset space  $\mathcal{X}$ ;
- The scope of protection (to where does the protection extend?): as instantiated by the data multiverse D, which is a collection of data universes D ⊂ X;
- The protection units (who are the units for data perturbation?): as conceptualized by the divergence d<sub>X</sub> on the dataset space X;
- The standard of protection (how to measure the output variations?): as captured by the divergence d<sub>T</sub> on (the probability distributions on) the output space T;
- The intensity of protection (how much protection is afforded?): as quantified by the privacy-loss budget ε<sub>D</sub> for each data universe D.